首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   10篇
  2021年   5篇
  2019年   5篇
  2016年   3篇
  2015年   11篇
  2014年   4篇
  2013年   10篇
  2012年   10篇
  2011年   7篇
  2010年   6篇
  2009年   4篇
  2008年   9篇
  2007年   10篇
  2006年   14篇
  2005年   3篇
  2004年   6篇
  2003年   7篇
  2002年   10篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有145条查询结果,搜索用时 20 毫秒
21.
Thermal stabilization of trypsin with glycol chitosan   总被引:1,自引:0,他引:1  
Glycol chitosan was evaluated as thermoprotectant additive for trypsin in aqueous solutions. Maximal stabilization was achieved by using a polymer/protein ratio of 2 (w/w). The catalytic properties of trypsin were not affected by the presence of the polysaccharide. The enzyme thermostability was increased from 49 °C to 93 °C in the presence of the additive. Trypsin was also 37-fold more stable against incubation at 55 °C and its activation free energy of thermal inactivation was increased by 9.9 kJ/mol when adding glycol chitosan.  相似文献   
22.
Land use and land cover changes in the Brazilian Amazon region have major implications for regional and even global carbon cycling. We analyzed the effects of the predominant land use change, conversion of tropical forest to pasture, on total soil C and N, using the Century ecosystem model and data collected from the Nova Vida ranch, Western Brazilian Amazon. We estimated equilibrium organic matter levels, plant productivity and residue carbon inputs under native forest conditions, then simulated deforestation following the slash and burn procedure. Soil organic matter dynamics were simulated for pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911. Using input data from the Nova Vida ranch, the Century model predicted that forest clearance and conversion to pasture would cause an initial decline in soil C and N stocks, followed by a slow rise to levels exceeding those under native forest. Simulated soil total C and N levels (2500 g C m?2 and 245 g N m?2 in the 0–20 cm layer) prior to conversion to pasture were close to those measured in the native forest. Simulated above‐ and below‐ground biomass for the forest and pasture were comparable with literature values from this region. The model predicted the long‐term changes in soil C and N under pasture inferred from the pasture chronosequence, but there was considerable variation in soil C stocks for pastures <20 years in age. Differences in soil texture between pastures were relatively small and could not account for much of the variability between different pastures of similar ages, in either the measured or simulated data. It is likely that much of the variability in C stocks between pastures of similar ages is related to initial C stocks immediately following deforestation and that this was the largest source of variability in the chronosequence. Internal C cycling processes in Century were evaluated using measurements of microbial biomass and soil δ13C. The relative magnitude and long‐term trend in microbial biomass simulated by the model were consistent with measurements. The close fit of simulated to measured values of δ13C over time suggests that the relative loss of forest‐derived C and its replacement by pasture‐derived C was accurately predicted by the model. After 80 years, almost 90% of the organic matter in the top 20 cm was pasture derived. While our analysis represents a single ‘case study’ of pasture conversion, our results suggest that modeling studies in these pasture systems can help to evaluate the magnitude of impacts on C and N cycling, and determine the effect of management strategies on pasture sustainability.  相似文献   
23.
We report the recombinant neurolysin and thimet oligopeptidase (TOP) hydrolytic activities towards internally quenched fluorescent peptides derived from the peptide Abz-GGFLRRXQ-EDDnp (Abz, ortho-aminobenzoicacid; EDDnp, N-(2,4-dinitrophenyl) ethylenediamine), in which X was substituted by 11 different natural amino acids. Neurolysin hydrolyzed these peptides at R-R or at R-X bonds, and TOP hydrolyzed at R-R or L-R bonds, showing a preference to cleave at three or four amino acids from the C-terminal end. The kinetic parameters of hydrolysis and the variations of the cleavage sites were evaluated under different conditions of temperature and salt concentration. The relative amount of cleavage varied with the nature of the substitution at the X position as well as with temperature and NaCl concentration. TOP was activated by all assayed salts in the range 0.05-0.2 m for NaCl, KCl, NH4Cl and NaI, and 0.025-0.1 m for Na2SO4. Concentration higher than 0.2 N NH4Cl and NaI reduced TOP activity, while 0.5 N or higher concentration of NaCl, KCl and Na2SO4 increased TOP activity. Neurolysin was strongly activated by NaCl, KCl and Na2SO4, while NH4Cl and NaI have very modest effect. High positive values of enthalpy (DeltaH*) and entropy (DeltaS*) of activation were found together with an unusual temperature dependence upon the hydrolysis of the substrates. The effects of low temperature and high NaCl concentration on the hydrolytic activities of neurolysin and TOP do not seem to be a consequence of large secondary structure variation of the proteins, as indicated by the far-UV CD spectra. However, the modulation of the activities of the two oligopeptidases could be related to variations of conformation, in limited regions of the peptidases, enough to modify their activities.  相似文献   
24.
D-Ribulose 1, 5-diphosphate carboxylase has been purified to a state of homogeneity from the marine blue-green alga Agmenellumquadruplicatum strain PR-6. The enzyme has been found to be easily separated from the bulk soluble protein by means of centrifugation into a sucrose gradient. RuDP carboxylase from Agmenellum, upon chromatography using a calibrated Sephadex G-200 column, exhibits a molecular weight of 456,000 daltons, considerably smaller than the protein from eucaryotic algae. Only one polypeptide of approximately 56,000 daltons was obtained upon dissociation in sodium dodecylsulfate.  相似文献   
25.
The RNA content and polypeptide composition of reticuloendotheliosis virus (REV) was compared to that of C-type RNA tumor viruses. Two RNA species with approximate sedimentation values of 64S and 4S were observed after sucrose gradient centrifugation of RNA extracted from purified REV. The high-molecular-weight RNA species of REV sedimented slightly faster than that of the Bryan strain of Rous sarcoma virus (RSV). Although these characteristics were consistent with those of other C-type RNA tumor viruses, significant differences were observed when the polypeptide composition of REV was compared with that of RSV possessing envelope determinants of Rous-associated virus RAV-2 and RAV-3. Five polypeptides of which two were glycosylated were resolved by polyacrylamide gel electrophoresis. The major nonglycosylated polypeptide of REV did not comigrate with that of RSV (RAV-2)-RSV(RAV-3). The majority of the group-specific antigen reactivity resides in this major nonglycosylated polypeptide of avian tumor viruses and comigrates when proteins of several avian tumor viruses are subjected to coelectrophoresis. This difference in the migration of the major polypeptide of REV and RSV(RAV-2)-RSV(RAV-3) may explain the absence of avian tumor virus group-specific antigen in REV.  相似文献   
26.
One challenging goal for the development of biosensors is the conception of three-dimensional biostructures on electrode surfaces. With the aim to develop 3D architectures based on single-walled carbon nanotubes (SWCNTs) frameworks a novel adamantane-pyrrole monomer was synthesized. After electrochemical polymerization at 0.95V in acetonitrile, the resulting polypyrrole film provided affinity interactions with beta-cyclodextrin. SWCNT coatings were thus functionalized with poly(adamantane-pyrrole) and applied to the anchoring of glucose oxidase (GOX), modified with beta-cyclodextrin. By using this affinity system adamantine-cyclodextrin, beta-cyclodextrin-modified gold nanoparticles were attached onto the functionalized SWCNT deposit as intermediate layer. This allows the immobilization of adamantane-tagged GOX. The responses of these biosensors to glucose were measured by potentiostating the modified electrodes at 0.7V versus saturated calomel electrode (SCE) in order to oxidize the enzymatically generated hydrogen peroxide in the presence of glucose and oxygen. The highest sensitivity and maximum current density were recorded for the configuration based on beta-cyclodextrin-modified gold particles as intermediate layer between adamantine-functionalized SWCNTs and GOX (31.02 mAM(-1)cm(-2) and 350 microAcm(-2), respectively). The similar configuration without SWCNTs exhibits a sensitivity and J(max) of 0.98 mAM(-1)cm(-2) and 75 microAcm(-2), respectively. The resulting supramolecular assemblies were characterized by scanning electron microscopy (SEM). Advantages and disadvantages of the different preparation methods and the performance of each affinity sensor setup are discussed in detail.  相似文献   
27.
Human activities that modify land cover can alter the structure and biogeochemistry of small streams but these effects are poorly known over large regions of the humid tropics where rates of forest clearing are high. We examined how conversion of Amazon lowland tropical forest to cattle pasture influenced the physical and chemical structure, organic matter stocks and N cycling of small streams. We combined a regional ground survey of small streams with an intensive study of nutrient cycling using 15N additions in three representative streams: a second-order forest stream, a second-order pasture stream and a third-order pasture stream. These three streams were within several km of each other and on similar soils. Replacement of forest with pasture decreased stream habitat complexity by changing streams from run and pool channels with forest leaf detritus (50% cover) to grass-filled (63% cover) channel with runs of slow-moving water. In the survey, pasture streams consistently had lower concentrations of dissolved oxygen and nitrate (NO3 ?) compared with similar-sized forest streams. Stable isotope additions revealed that second-order pasture stream had a shorter NH4 + uptake length, higher uptake rates into organic matter components and a shorter 15NH4 + residence time than the second-order forest stream or the third-order pasture stream. Nitrification was significant in the forest stream (19% of the added 15NH4 +) but not in the second-order pasture (0%) or third-order (6%) pasture stream. The forest stream retained 7% of added 15N in organic matter compartments and exported 53% (15NH4 +?=?34%; 15NO3 ??=?19%). In contrast, the second-order pasture stream retained 75% of added 15N, predominantly in grasses (69%) and exported only 4% as 15NH4 +. The fate of tracer 15N in the third-order pasture stream more closely resembled that in the forest stream, with 5% of added N retained and 26% exported (15NH4 +?=?9%; 15NO3 ??=?6%). These findings indicate that the widespread infilling by grass in small streams in areas deforested for pasture greatly increases the retention of inorganic N in the first- and second-order streams, which make up roughly three-fourths of total stream channel length in Amazon basin watersheds. The importance of this phenomenon and its effect on N transport to larger rivers across the larger areas of the Amazon Basin will depend on better evaluation of both the extent and the scale at which stream infilling by grass occurs, but our analysis suggests the phenomenon is widespread.  相似文献   
28.

Rationale

The degree to which tuberculosis (TB) is transmitted between persons is variable. Identifying the factors that contribute to transmission could provide new opportunities for TB control. Transmission is influenced by host, bacterial and environmental factors. However, distinguishing their individual effects is problematic because measures of disease severity are tightly correlated, and assessing the virulence of Mycobacterium tuberculosis isolates is complicated by epidemiological and clinical confounders.

Objectives

To overcome these problems, we investigated factors potentially associated with TB transmission within households.

Methods

We evaluated patients with smear-positive (≥2+), pulmonary TB and classified M. tuberculosis strains into single nucleotide polymorphism genetic cluster groups (SCG). We recorded index case, household contact, and environmental characteristics and tested contacts with tuberculin skin test (TST) and interferon-gamma release assay. Households were classified as high (≥70% of contacts with TST≥10 mm) and low (≤40%) transmission. We used logistic regression to determine independent predictors.

Result

From March 2008 to June 2012, we screened 293 TB patients to enroll 124 index cases and their 731 contacts. There were 23 low and 73 high transmission households. Index case factors associated with high transmission were severity of cough as measured by a visual analog cough scale (VACS) and the Leicester Cough Questionnaire (LCQ), and cavitation on chest radiograph. SCG 3b strains tended to be more prevalent in low (27.3%) than in high (12.5%) transmission households (p = 0.11). In adjusted models, only VACS (p<0.001) remained significant. SCG was associated with bilateral disease on chest radiograph (p = 0.002) and marginally associated with LCQ sores (p = 0.058), with group 3b patients having weaker cough.

Conclusions

We found differential transmission among otherwise clinically similar patients with advanced TB disease. We propose that distinct strains may cause differing patterns of cough strength and cavitation in the host leading to diverging infectiousness. Larger studies are needed to verify this hypothesis.  相似文献   
29.

Background

In this study we compared the utility of two molecular biology techniques, cloning of the mitochondrial 12S ribosomal RNA gene and hydrolysis probe-based qPCR, to identify blood meal sources of sylvatic Chagas disease insect vectors collected with live-bait mouse traps (also known as Noireau traps). Fourteen T. guasayana were collected from six georeferenced trap locations in the Andean highlands of the department of Chuquisaca, Bolivia.

Methodology/Principal Findings

We detected four blood meals sources with the cloning assay: seven samples were positive for human (Homo sapiens), five for chicken (Gallus gallus) and unicolored blackbird (Agelasticus cyanopus), and one for opossum (Monodelphis domestica). Using the qPCR assay we detected chicken (13 vectors), and human (14 vectors) blood meals as well as an additional blood meal source, Canis sp. (4 vectors).

Conclusions/Significance

We show that cloning of 12S PCR products, which avoids bias associated with developing primers based on a priori knowledge, detected blood meal sources not previously considered and that species-specific qPCR is more sensitive. All samples identified as positive for a specific blood meal source by the cloning assay were also positive by qPCR. However, not all samples positive by qPCR were positive by cloning. We show the power of combining the cloning assay with the highly sensitive hydrolysis probe-based qPCR assay provides a more complete picture of blood meal sources for insect disease vectors.  相似文献   
30.
Sodium alginate, activated by periodate oxidation, was covalently linked to porcine pancreatic α‐amylase via reductive alkylation with NaBH4. The enzyme‐polymer conjugate, purified by gel filtration on Fractogel EMD BioSEC (S), retained about 50% of the native specific amylolytic activity. The sugar content was estimated to be 712 mol of monosaccharides per mol of enzyme protein. An average of 11 amino groups out of 21 groups from α‐amylase were modified with the polysaccharide. The functional stability was improved for α‐amylase after conjugation with sodium alginate. In comparison with the native enzyme, the thermostability of α‐amylase was increased by this modification. In addition, the stability in the range of pH 5.0–11.0 was improved for the modified enzyme. The conjugate was also more resistant to denaturation by 0.3% sodium dodecylsulphate, retaining about 10% of its initial activity after 120 min of incubation. The formation of stabilizing salt bridges in the protein surface of the α‐amylase‐polysaccharide complex was confirmed by FT‐IR spectrometry. Attending to the results obtained, we conclude that the covalent attachment of the anionic polysac‐charide sodium alginate to the enzymes might be a useful and non‐expensive method for improving the stabilization of these biocatalysts under various denaturing conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号